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Absimer We review recent theoretical and compnfer studies on formation and dynamics of 
self-assembled smcmres in surfactant solutions. One of the important feahues of swfacIant 
solutions is the hiefdlrhical MtUre in the stmchue. where atomic (microscopic). supermolecular 
(mesascupic) and macroscopic smchues coexist. In view of these smcture~ with different 
length scales, many theoretical as well as computer models have been proposed from different 
points of view. We discuss relations between these models and give a brief review of OUT hybrid 
approach which is expected to bridge microscopic and macroscopic models. 

1. Introduction 

In recent condensed matter research, soft condensed materials, such as polymers, emulsions 
and colloidal suspensions, have become more and more popular as targets of theoretical 
as well as experimental studies. Considerable understanding of the static and dynamic 
properties of these materials has been achieved [l-31. Theoretical developments have largely 
been driven by phenomenological modelling on the mesoscopic level 111, and moreover by 
the recent rapid developments in high-speed computers, the latter enabling us to perform 
largescale numerical simulations of soft condensed materials. In this brief review, we 
discuss recent developments in the theoretical and computer investigations of dynamics of 
surfactant solutions as a typical example of the soft condensed materials research. 

Surfactant is a material which is adsorbed onto interfaces (phase boundaries) and lowers 
the interfacial tension. A surfactant molecule has two distinct parts, which dissolve into 
different solvents, and therefore surfactant molecules are generally called amphiphiles. For 
example, a soap molecule has a hydrophilic part and a hydrophobic part; the former dissolves 
into water while the latter dissolves into oil. Thus the soap molecules are adsorbed onto 
water/oil interfaces and form two-dimensional sheets of soap molecules on the interfaces, 
where the soap molecules align with their hydrophilic parts directed to the water and their 
hydrophobic parts to the oil. Due to the in-plane pressure generated by such a surfactant 
sheet, the original interfacial tension of the watedoil interface is cancelled, leading to a 

7 To whom comespondence should be addressed. Permanent address: Department of Physics, Tokyo Metropolitan 
University, Hachioji, Tokyo 19243, Japan. 
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Fi- 1. Schematic illusMions of typical domain s t m "  formed in water/oil/surfactant 
threeamponen1 solutions. (a) Irregulv bicontinuous. (b) micellar, (e) lamellar and (d) bilayer 
smc1uIes. 

decrease in the effective interfacial tension. This is one of the most important roles of 
surfactants in solutions. 

Depending on the composition of a water/oillsurfactant mixture, the system shows 
various complex domain structures 141. In the low-surfactant-density region, it shows 
bicontinuous or micellar (globular) domain structures, while it shows regular arrangements 
of oil and water domains separated by surfactant sheets with lamellar, cylindrical or cubic 
symmetries in the high-surfactant-density region [4]. Several typical domain structures are 
schematically illustrated in figure 1. An important point is that these domain structures 
are in thermal equilibrium (i.e. they are thermodynamically stable). For a particular choice 
of the surfactant, the characteristic length of such domain structures can be of the order 
of 1W1000 A, which is much larger than the molecular scale but is still below the 
macroscopic length scales. In contrast to the ordinary emulsions whose domain structure 
has a characteristic length on a macroscopic scale, these phases with microscopic domain 
structures are called m'croemuisions. On the other hand, when the surfactant molecules are 
dissolved into water, they form bilayer membranes upon self-assembling, which often take 
a closed shape called a vesicle 151 or sometimes take the form of an irregularly connected 
network of bilayers called a sponge phase [6]. 

In this brief review, we try to show an aspect of the current research on surfactant 
solutions focusing on the dynamics of formation processes of the self-assembled structures. 
We first give a brief overview of experimental results, in the next section. In section 3, 
various models to account for the static properties of microemulsions are summarized. 
We will see that most of the existing theories and computer simulations are done either 
on the microscopic level or on the macroscopic level and a gap seems to exist between 
these two kinds of approach. In section 4, we explain the relations between microscopic 
and macroscopic models with the use of a coarsegraining procedure within the mean- 
field approximation. We also explain the hybrid approach to microemulsion dynamics, 
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which is expected to bridge the gap between microscopic and macroscopic approaches. 
Theoretical and computer-simulation results of several models are presented in section 5. 
Section 6 is devoted to discussion. 

2. Some experimental results 

Experimental investigations on structures of microemulsions have been performed with 
the light and neutron scattering techniques and with the electron micrograph technique 
combined with the freeze-fracture method /73. Most of these works are focused on the 
static or equilibrium structures of microemulsions. 

2.1. Equilibrium domain structures 

It is well known that a water/oil/surfactant mixture shows irregular bicontinuous domain 
structures or irregularly arranged micellar domain structures when the surfactant density is 
relatively low [4] (see figure 1). Structures of microemulsions can directly be observed 
with the freeze-fracture electron micrograph technique [8], by which one recognizes that 
a characteristic periodicity exists in the domain configuration although the domains are 
not arranged like a perfect crystal. Such a periodicity is understood as the origin of the 
scattering peak from microemulsions observed by light and neutron scattering [SI. In 
figure 2, typical scattering intensities from a microemulsion are shown, where a single 
remarkable peak appears [lo]. A similar scattering peak can also be seen in the scattering 
intensity from binary polymer mixtures which undergo spinodal decomposition [ll]. In the 
case of spinoddly decomposing binary mixtures, the position of the scattering peak gradually 
shifts to the lower-wavenumber side, and therefore there is no equilibrium scattering peak 
with a finite wave number. 
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Figure 2 % i d  scattering inlensily profiles obtained by small-angle neutron scattering 
experiments on water/"-decanelAoT mixhue with 15% oil weighl fraction and 12% AOT weight 
fraction (see [lo]). 

On the other hand, in the case of binary mixtures containing surfactants, a stationary 
scattering peak with a finite wave number does exist even in the equilibrium state as is 
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shown in figure 2. Such a difference originates from the very low interfacial tension of the 
surfactant-adsorbed interfaces. When an interface has non-vanishing interfacial tension, 
there is an excess free energy at interfaces, which amounts to the interfacial tension 
multiplied by the interfacial area. As the interfaces are driven in such a way that this 
interfacial excess free energy is reduced, the total interfacial area decreases in time and 
the coarsening of the domains proceeds. Such a driving force for the interfaces is greatly 
reduced when a surfactant is dissolved into the binary mixture. This is the origin of the 
stable scattering peak from microemulsions. A brief explanation of this problem is given 
in subsection 5.2. 

2.2. Dynamics of phase separation 

When a water/oil/surfactant mixture is used as a specimen for scattering experiments, it 
is difficult to study dynamics of formation processes of the final domain structure because 
of the very short time scale of the phase separation as in a normal binary fluid mixture 
[12], which is beyond the resolution of timeresolved lightheutron scattering experiments. 
However, use of polymer systems enables us to observe temporal evolution of the phase 
separation due to the slow dynamics of polymers caused by the entanglements between 
polymer chains. A block copolymer is a kind of surfactant, which possesses amphiphilic 
nature. A linear diblock copolymer chain consists of two distinct subchains connected 
at one end as is shown schematically in figure 3. For example, if we consider an A- 
B diblock copolymer dissolved into an A/B binary homopolymer blend which undergoes 
phase separation, the A subchain dissolves into the phase with a high concentration of the A 
homopolymers (A-rich phase), while the B subchain dissolves into the B-rich phase. Thus 
the A-B block copolymer serves as a surfactant in the A/B homopolymer blend. A binary 
polymer blend containing an amphiphilic block copolymer shows similar phase-separated 
structures to micmemulsions. 

A B 

Figure 3. A schematic illustration of an A-B diblock copolymer chain. 

In studying the phase-separation dynamics by scattering experiments, there are several 
useful observable quantities, which can be compared with theoretical predictions. The 
scattering function S(k ,  t )  and the characteristic length l ( t )  are such useful observables. 
The scattering function (or scattering intensity) S(k, t )  for isotropic phases is given by 

S(k, t )  = drexp(-ik. r)(X(r, t )X(O,  t ) )  (2.1) I 
where k Ikl is the magnitude of the wavevector I C ,  X ( T ,  f) is the concentration difference 
between the two components of the binary mixture at position r at time t and ( ) denotes 
the thermal average. The characteristic length l ( t )  is the measure of the average domain 
size and is often defined as the inverse of the characteristic wave number defined for 
example by the first moment of S(k, t )  or by the wave number for which S(k, t )  takes 
its maximum value. These quantities can be calculated from theoretical models and from 
computer simulations. Therefore, experimental data for these quantities are important to 
check the validity of theoretical models. 
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Scattering experiments on the dynamics of phase separation in polymerhlock copolymer 
systems have just started recently [13,14]. Roe and co-workers investigated the dynamics of 
formation processes of micellar structures of a polystyrene/polybutadiene/stylene-butadiene 
diblock copolymer three-component polymer mixture with the light scattering and optical 
microscopic techniques [13]. They investigated the growth law of the characteristic length 
which shows that 

l ( t )  = ( Y P  (2.2) 

where t is time, (Y is a proportionality factor and z is the growth exponent. The power 
law growth given by equation (2.2) is known as dynamical scaling [15]. They observed 
the same growth exponent for binary polymer mixtures both without and with the block 
copolymer. The only difference. they found is a reduction in the prefactor (Y when the block 
copolymer is added to the polymer blend. 

0.0 2.0 4.0 6.0 8.0 10.0 

L x 1 0 3 / ~ ~ - 1  

FI- 4. Temporal evolution of the scattering intensity S(k. I) observed in a light scattering 
experiment on a polymer blend containing 6% block copolymer. I is the real time and T is a 
dimensionless time measured in unis of the characteristic time in the early stage of the spinodd 
decomposition (see [141). 

Hashimoto and Izumitani performed light scattering experiments using polybutadiene 
(PB)/stylenebutadiene random copolymer (SBR)/SBR-PB diblock copolymer (SBR-b-PB) [14]. 
Their experiments were done at the critical quench, where the volume fractions of the PB 
phase and that of the SBR phase are almost equal and therefore a bicontinuous domain 
structure is formed. The growth law equation (2.2) and other dynamical scaling propehes 
were examined and the results are shown in figures 46. Figure 4 shows the temporal change 
of the scattering intensity S(k, t), where one can clearly observe that the peak shifts to the 
lower-wave-number side as time goes on, which is a sign of the coarsening of domains. The 
temporal evolution of the wave number at the peak position of S(k, t )  is shown in figure 5, 
from which one can determine the growth exponent z in equation (2.2). One observes a 
decrease in the growth exponent z in a suliiciently late stage of the phase separation due to 
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Figure 5. Experimentally observed temporal evolution of the characteristic wave number 1 
defined as the peak position of S(k. 1 )  on a double logarithmic scale, Weight fractions of the 
block copolymer are O%, 3% and 6%. respectively (see [141). 

the added block copolymer. Izumitani and Hashimoto also investigated the functional form 
of the scattering function S(k,  t ) .  In figure 6, the scaled scattering function s ( x )  defined as 

S(k,  t )  = i - d s ( k / i )  (2.3) 

for the cases without and with added block copolymer are shown. The scattering function 
does not change its functional form appreciably in spite of the obvious slowing down of 
the domain growth. 

In the following sections, we show how to model and analyse theoretically such 
dynamical processes. 

3. Theoretical models-brief overview 

As for the experimental situation, theoretical developments in the understanding of 
microemulsions have been achieved mainly for the equilibrium properties, such as 
the calculation of the phase diagram of three-component mixtures or the statistics of 
equilibrium domain configurations. In this section, we give a brief overview of models of 
microemulsions for later convenience. For a complete review of theories on static properties, 
readers may refer to the recent article by Gompper and Schick 1161. 

3.1. Interface models 

Theoretical studies of equilibrium domain configurations in microemulsions have been 
initiated by the pioneering work by Schulman and Montagne [17] and later works by 
Talmon and Prager [IS], by de Gennes and Taupin E191 and by Widom [ZO]: Here we 
summarize Widom’s model [ZO], which has a rather simple form but retains essential features 
of microemulsions. Widom used a cubic lattice with a lattice constant E to specify positions 
of water-rich domains, oil-rich domains and surfactant. The lattice constant f is regarded 
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Iog x 
Figure 6. Experimentally observed scaled scattering functions $(x )  defined by equation (2.3). 
The block copolymer content is (a) 0% and (b) 68, respectively, and r is thc dimensionless 
time (see'Il41). 

as the correlation length of the composition fluctuation, over which the relative composition 
between water and oil can be regarded as almost constant. Thus each cubic cell on each 
lattice point is filled with either only water or only oil. The surfactant is assumed to lie 
on the faces between water-rich cells and oil-rich cells, and therefore the total area of 
faces separating water-rich cells and oil-rich cells is proportional to the surfactant density. 
Assuming that the water-rich cells and oil-rich cells are distributed randomly on the lattice 
(mean field approximation), the total free energy of the system can be expressed in terms 
of the volume fractions of water, oil and surfactant denoted as @A, q 5 ~  and ps and of the 
correlation length 5 [ZO]: 

F = KA@A f K B ~  f kBT(@A ln@A f 6; In&) f h O @ A h B / f  

- bTPs  ln(x/xo) f - N@A - @B)t1/2t2 (3.1) 

where pA and pg are the chemical potentials of water and oil, uo is the bare interfacial 
tension of the water/oil interface. C is the total area of the watedoil interface which is a 
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function of $A, &, and c3 and Bo, D and A are constants. The first line is the free energy 
of the water/oil binary mixture, the first and the second terms in the second line are the free 
energy of the two-dimensional surfactant fluid and the bending energy of surfactant-adsorbed 
interfaces, respectively. The equilibrium phase diagram can be obtained by minimizing F 
with respect to 6 for the given volume fractions $A, & and ps. The calculated phase 
diagram was found to reproduce the essential features of the real phase diagram [4, 201. A 
similar approach was later used to reproduce scattering functions from microemulsions [21]. 
Note that the treatment adopted here is not a microscopic approach but a coarse-grained 
mesoscopic approach, because the lattice constant 6 is usually much larger than the atomic 
length scale, where each lattice point corresponds to a group of molecules rather than a single 
molecule. Such a description was adopted in order to describe the mesoscopic structure of 
microemulsions effectively by averaging out the microscopic details of water/oil/sufactant 
molecules. 

3.2. Lattice models 

Besides the interface models mentioned in the preceding subsection, other microscopic 
spin-lattice models have been proposed as models of microemulsions. The lattice model 
of microemulsions proposed by Widom [22] is the origin of a diverse number of lattice 
models of microemulsions used in the later analytical studies and computer simulations 
123-281. In Widom’s lattice model, water, oil and surfactant molecules are described by 
nearest-neighbour A-A, B-B and A-B pairs, respectively (see figure 7 for a schematic 
explanation). 

l l b  - - . u . - - - - O c -  1 1 1- - A (water) -. .--. U 

--oo-o- d d I - a surfactant (Oil) 

-Q0-- -30-- - -0~ % % I  
P P P  

Figure 7. A schematic illustration of Widom’s spin-lauice model of a microemulsion. 

Lattice models can also be extended in such a way that the internal degrees of freedom of 
constituent molecules are taken into account Larson and co-workers used a lattice model to 
study molecular configurations in microemulsions [28]. In their model, the water molecule 
is modelled as a monomer which occupies a single lattice point, while the oil molecule 
is modelled as a short linear chain consisting of the same monomer units which occupy 
consecutive lattice points. The surfactant molecule is modelled as a linear chain consisting 
of several water-Vie (A) units and oil-like (B) units. Here, each lattice point (or monomer) is 
regarded as a microscopic object. The system has only one interaction parameter x defined 
by x XAB -(xu + x B B ) / ~ ,  where x u ,  XBB and XAB are the interaction energies between 
A-A, B-B and A-B nearest-neighbour pairs divided by  BT. Using the Monte Carlo (MC) 
simulation technique, Carson et nl succeeded in reproducing various equilibrium domain 
configurations 1281. A configuration generated by the Mc simulation on a two-dimensional 
system is shown in figure 8. Here, the interaction parameter x is chosen as x = 0.5 so that 
the water units and oil units are repelling each other and the surfactant chain is composed of 
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four water units and four oil units. Although the surfactant molecules align on the watedoil 
interfaces, the configuration of the surfactant molecules in the layer is random rather than 
a regularly aligned monolayer as is often sketched in schematic pictures. 

Figure 8. A snapshot pictures of a model micmmulsion by Larson and co-workers (see 1281). 

3.3. Molecular models 

Another microscopic approach is based on a fully molecular point of view. Smit and co- 
workers used a similar modelling to that used by Larson et d but without assuming the 
underlying lattice [29]. In this model, the water molecule and the oil molecule are modelled 
as spherical monomers of different kinds interacting via the truncated Lennard-Jones (U) 
potential 

 where Rt is the cut-off distance of the interaction between the i - j  pair and $(r)  is the 
so-called w potential defined as 

$(r)  =4E [E) ’* - (3.3) 

where E and U are the energy unit and the interaction diameter respectively. The cut-off 
distance is taken to be Rkw = R& = 2 . 5 ~  and R&, = 2% (w and o stand for water and oil) 
so that the interaction between oil and water is purely repulsive while the interaction between 
water-water and oil-oil pairs includes the attractive part of the U potential. This selection of 
the cut-off distances causes the water/oil mixture to phase separate. The surfactant molecule 
is modelled as a linear chain of water monomers and oil monomers. Using the molecular 
dynamics (MD) simulation technique, equilibrium configurations are generated. 

Such a molecular model combined with the MD simulation technique can also be used 
to investigate dynamical properties of microemulsions. Laradji eta1 performed a molecular 
dynamics simulation on the phase separation processes of a three-component mixture of 
AiB/surfactant 1301. In their simulation, the A and the B molecules are modelled by spheres 
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interacting via modified Lennard-Jones potentials and the surfactant molecule is modelled 
by a pair of an A molecule and a B molecule connected by a harmonic spring. They 
performed a large-scale simulation and showed that their model can reproduce essential 
features of the phase-separating binary mixtures containing surfactants, such as the slowing 
down of the phase separation in the late stage and the final domain structures. Such an MD 
simulation requires a long computer time because one has to treat all the molecular degrees 
of freedom of the three-component mixture. In order to construct a more economical model, 
a reduction of the degrees of freedom is necessary. 

3.4. Continuum models 

So far, we have reviewed the models where the microemulsion is described by discrete 
variables like lattice points or discrete monomers. As is well known in the field of critical 
phenomena [31], discrete models can be mapped, under certain conditions, to continuum 
models where the system is described by continuous field variables such as the density 
distributions or the relative concentration of binary mixtures. Such a mapping is performed 
by coarse graining the system and retaining only the slowly varying and long-wavelength 
variables. Instead of deriving the coarsegrained free energy from a microscopic model, 
an explicit expression for the coarse-grained free-energy functional can also be obtained 
by pure symmetry arguments on the macroscopic level. This is done by expanding the 
freeenergy functional in power series of the continuous field variables and by retaining the 
leading several relevant terms with the same symmetry properties as those of the system 
itself. 

Such continuum models have successfully been used to investigate critical phenomena 
like phase separation of binary mixtures or order4isorder phase transitions [31]. Extensions 
of the theory to surfactant solutions were made only recently 132-351. Here, we show the 
model proposed by Laradji er al for a binary mixture containing a surfactant [34]. In 
their model, two continuous fields are used to describe the local phase separation of the 
watedoil binary mixture and the local concentration of the surfactant. The phase separation 
of the waterloil mixture is described by a scalar field X ( r )  = ~ A ( T )  -&(T), where @A(T) 

and $B(T) are local densities of water and oil, respectively. On the other hand, the local 
density of surfactant is described by another scalar field ps(r). The free-energy functional 
is assumed to have the following form: 

(3.4) 

where c, r ,  U, g ,  a,  p and s are phenomenological parameters and are all positive. The 
surface-active effect of surfactant is expressed by the last term, which expresses two major 
properties of surfactant. One i s  the tendency that the surfactant is adsorbed to the interfacial 
region of the binary mixture where (OX)’ is large. The other important surfactant property 
is the reduction of the interfacial tension. As the surfactant is adsorbed to the interfacial 
region more and more, the total coefficient of (OX)’ in equation (3.4) is reduced. As the 
square of the interfacial tension of the model equation (3.4) is proportional to the coefficient 
of (OX)’,  the interfacial tension is reduced by the surfactant adsorption onto the interface. 

4. From microscopic to macroscopic-reduction of degrees of freedom 

In the preceding section, we reviewed existing theoretical models proposed from different 
points of view. These models are classified roughly into two categories. One is the 



Se~-assembling surfactant solutions 6395 

microscopic models such as the molecular models and lattice models, where both the 
surfactant and the solvent are treated as discrete degrees of freedom. The other group 
is the macroscopic models like the continuum models using long-wavelength fluctuations 
in compositions and surfactant orientation in order to describe the total free energy of the 
system. Interface models can also he categorized into these macroscopic models, because a 
coarse-grained picture is adopted to model the domain structures and surfactant sheets. No 
model exists between these two groups. 

Macroscopic models should in principle be derived from the microscopic models by 
coarse graining the microscopic degrees of freedom and projecting such microscopic degrees 
of freedom onto several slow and long-wavelength modes. Here we consider such a 
procedure to relate the microscopic models and macroscopic models. One point which 
should be noted is the fact that there are several length scales coexisting in the surfactant 
solutions. The smallest scale is the molecular size of the solvent. (We are not interested 
in the phenomena on the submolecular levels.) The size of the surfactant molecule is in 
general different from that of the solvent molecule. For example, if a block copolymer is 
used as a surfactant, the size of the surfactant molecule can be much larger than the solvent 
molecules. Another length scale is the correlation length in the composition fluctuation of 
the phase separating binary solvent, which can be much larger than the molecular size of 
the solvent when the system is close to the critical point. The largest intrinsic length scale 
will be the average size of the domains separated by surfactant sheets. The macroscopic 
models obtained as a result of the coarse-graining procedure include these characteristic 
lengths explicitlyhnplicitly in the model parameters. 

Now, we discuss how a macroscopic model can be derived from a simple microscopic 
model. We will discuss thii within the mean field approximation with the simple continuum 
approximation of the long-wavelength fluctuations. For a more rigorous treatment for the 
model parameters, one should rely on the renormalization group method 1361. As a starting 
point, we adopt a lattice model of an A B  binary solvent containing a surfactant An A or a 
B solvent molecule is assumed to occupy a single lattice point, and the surfactant molecule 
is described by a diblock copolymer of N = NA+ NB monomers composed of a linear chain 
of N A  molecules (monomers) of the A solvent and a chain of NB molecules (monomers) 
of the B solvent. The total free energy of the system divided by kBT, denoted as F ,  is 
composed of three conbibutions: 

F = E - St - Si.t (4.1) 

where E is the interaction energy between monomers, St is the entropy associated with the 
translational degrees of freedom of molecules and Si., is the entropy associated with the 
internal degrees of freedom of the surfactant molecules. The local mean field approximation 
leads to the following explicit expressions for E and S, up to the lowest relevant order apart 
from irrelevant constant contributions: 

E = - dT [ZIXAAP; XBBP~ f ~ X A ~ P A P B ~  
2po ‘ J  

where a is the lattice spacing, po = l/a3 is the total monomer number density, Z is the 
number of nearest-neighbour lattice points (Z = 6 for a cubic lattice), &(T) and $K(T) (K = 
A or B) are the local monomer number densities of the K component of the solvent and of the 
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surfactant, respectively, P K ( T )  = @ K ( T )  + @K(T)  is the number density of the K monomers 
including both the solvent and the surfactant and XKKC is the interaction energy of a K-K' 
monomer pair divided by kBT. The expression for Sinc depends on the polymerization index 
N of the surfactant molecule and will he considered separately. 

Introducing the order parameters X ( T )  and Y ( r )  by 

x ( T )  EZ 4A(T) - &(TI y(T) E @A(T) - $'B(T) (4.4) 

the freeenergy expression F is rewritten using equations (4.1)-(4.3) as 

x a' F = - d r  - - ( X + Y ) ' + - ( V ( X + Y ) ) '  
2Pa ' J  [T 2 

+PO{(@ + X )  In(@ + X )  + (4 - X )  In(@ - X) + -In $1 + Si,, (4.5) z@ N I 
where @(TI = @A(T) + &(T) and @(T) = @.A.(T) + @B(T) ,  respectively, and x 
,ym - (XM + X B B ) / ~  is the usual x parameter. In equation (4.5) we omitted some constant 
contributions to the free energy using the fact that the order parameters X ,  Y ,  @ and @ 
are macroscopic density fields which are conserved variables. The equations of motion for 
these conserved order parameters take the form of the continuity equation, for example 

(4.6) 

In the purely dissipative case, the current j, is derived from the thermodynamic chemical 
potentials as 

a - X ( T ,  t )  = -v.  j X ( T ,  t). 
at  

j ,  = -LXXVpx - LXYVpLr - LX$Vp* (4.7) 

where p x  SF/GX etc. Here, we have used the fact that only X ,  Y and @ are independent 
variables due to the condition @(TI + @(T) = PO (= constant). Similar equations hold also 
for Y and @, where the Onsager kinetic coefficients L @  etc satisfy L@ = LJ". 

0 A-monomer 

0 B-monomer 

monomer trimer block copolymer 

Figure 9. Model surfactant molecules on a cubic lattice. (a) monomeric surfactant, (b) trimeric 
surfactant and (c) polymeric surfactant, respectively. 

Equations (4.5)-(4.7) describe the dynamics of slow and long-wavelength fluctuations of 
the system. In the following, we derive explicit expressions of the equations of motion for 
several particular models illustrated in figure 9, i.e. (a) monomeric surfactant, (b) trimeric 
surfactant and (c) polymeric surfactant. In the following, we limit our discussions to the 
case with the equimolar composition of A and B species for simplicity. 
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4.1. Monomeric surfactant-impurity molecule 

As an example of small surfactant molecules, let us consider a monomer made of one half 
of an A monomer and one half of a B monomer connected rigidly, which occupies a single 
lattice point (i.e. N = 1, see figure 9(a)). Noting the fact that Y = 0 and Siot = 0, equation 
(4.5) can be reduced to 

. 
+ (# - X) In(# - X )  + Z@ In*} . (4.8) 

In this monomeric surfactant case, the amphiphilic nature, which is the most important 
feature of surfactants, is not taken into account explicitly. Therefore, the surfactant molecule 
in this case is just like an impurity molecule. 

4.2. Trimeric surfactmt-small surfactant molecule 

The simplest way to mimic the amphiphilic property will he to use a dimer composed of 
an A monomer and a B monomer [37], or to use a rigid linear trimer molecule composed 
of an A monomer, an 0 monomer and a B monomer 12.51, where. the 0 monomer is the 
neutral monomer introduced in the preceding subsection. In this case, let us introduce 138, 
391 

1 

and 

(4.9~) 

(4.9b) 

(4.9c) 

where ri is the po$ition of the centre monomer of the ith surfactant molecule, di is the 
unit vector from the B monomer to the A monomer of the ith surfactant molecule and 1 
is the unit tensor. Note that, when N is small, ps(r) is approximately related to e(?-) by 
ps ( r )  - @ ( r ) / N  by its definition. Using these definitions, the free energy can be rewritten 
up to the lowest relevant order as equation (4.1) with 

1 - ? a s .  V X  - ?a'(V. 9)' 
Po 

(4.10~) 

and 

Si, = -2 2 S d r  ps [ (i)' + Tr (y )] (4.10~) 
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where Si, is the entropy of the directional degrees of freedom of the surfactant molecules 
and Tr denotes the trace of the tensor. In this model, the order parameter Y(T),  the density 
difference between the A monomers and B monomers of the surfactant, is expressed in 
terms of an vector field S(T) and a tensor field S(r) reflecting the fact that an A monomer 
and a B monomer are connected by a short rigid bond and cannot undergo macro phase 
separation just like the microphase separating block copolymer melts [40-43]. 

The model free energy, equations (4.10a-c). contains most of the important terms in 
the model proposed by Chen et a1 [321, where only the local density difference X(r) and 
the local orientation of surfactant molecules S(T) are taken into account. 

As we retained only terms up to second order in ps and S in equations (4.100-c), these 
variables can be eliminated by integrating them out. Neglecting the contributions from 
spatial derivatives of higher order than second order, the free-energy functional becomes 

(4.11) 

By expanding the second and the third lines of equation (4.11) in power series of small 
fluctuations in 4, ps and X around their average values, one can confirm that equation 
(4.11) is essentially the same as that used by Laradji eta1 [34] except for small differences. 

4.3. Polymeric sulfnctant-large sulfnckant molecule 

When the surfactant molecule is a block copolymer with a large polymerization index 
(N >> I), the surfactant molecule can be regarded as a mesoscopic object just like a cloud 
of monomers distributed over the range of RG, where RC is the radius of gyration of 
the block copolymer chain [l]. This RG can be as large as the correlation length in 
the composition fluctuation of the binary mixture, the latter being the length scale over 
which the averaging procedure for the coarse graining is performed. For example, the local 
composition X ( r )  should be regarded as a variable whose short-wavelength fluctuations 
below 5 have already been averaged out. Therefore, if the size of the surfactant molecule 
RG is of the same order as g, the treatments of the surfactant in sections 4.1 and 4.2 are not 
appropriate, and one has to take the spatial extent of the surfactant molecules into account. 

One way to accomplish this is to adopt the results of the recent density-functional 
theories of block copolymer melts [40-43]. For example, Ohta and Kawasaki studied the 
strong-segregation limit of a block copolymer melt by splitting the freeenergy functional 
into two parts 1421. One is the short-range interaction which originates from the local 
monomer-monomer interaction. This short-range interaction FSR takes the same form as 
that for the order parameter X ( r )  in equations (4.2) and (4.3). The other is the long range 
interaction due to the polymer nature. As the A subchain and the B subchaii are connected 
by a chemical bond, they cannot undergo macrophase separation. Thus the composition 
fluctuation of the block copolymer should vanish in the limit k -+ 0, where k is the wave 
number. Such a penalty is accounted for by adding an extra interaction: 

FLR= r / d r  G(r-r’)Y(r)Y(r’) 
2 

(4.12) 
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where K is a coefficient which depends on N as K - N-’ and G(T - T’) is the Green 
function for the diffusion field defined by V G f r  - T’) = -S(T - T’) 142,431. Replacing 
the surfactant parts in equations (4.3)-(4.3) by these Fsn and FLn, one obtains a total free 
energy for solventlblock copolymer mixtures, which can be used as a suitable model for 
studying the dynamics of phase separations [44]. 

4.4. Hybrid model 

In the model discussed in section 4.3, block copolymer chains are described by continuous 
fields Y(T) and @(T). Thus the details of individual surfactant molecules such as the 
molecular shape, have already been averaged out However, when the surfactant molecule 
is a macromolecule like a block copolymer, we cannot neglect the discrete nature of the 
surfactant molecules, because a single block copolymer chain is already a macroscopic 
object. In such a case, molecular details of the surfactant may affect the macroscopic 
properties of the system. In most of the models mentioned so far, the directional degrees 
of freedom of surfactant molecules are eliminated adiabatically as was done in deriving 
equation (4.11). Such an elimination can be justified as long as the surfactant molecule 
is small and the directional degrees of freedom of surfactant molecules are equilibrated 
fast enough. ~ However, when the surfactant molecule is large, directional degrees of 
freedom cannot be equilibrated instantaneously and may have a characteristic relaxation 
time comparable to that of the phase separation dynamics. In that case, one should retain the 
directional degrees of freedom. Moreover, a single block copolymer can induce considerable 
composition fluctuation by itself on the same length scale as the correlation length of the 
solvent due to the intramolecular structure of the block copolymer molecule. These facts 
suggest the necessity of a discrete treatment of surfactant molecules. Molecular detail should 
also be taken into account when surfactant molecules have a size asymmetry between two 
parts of the surfactant molecules: the surfactant molecules~are adsorbed onto interfaces 
and give rise to spontaneous curvature of the interfaces. In order to retain such molecular 
details in the model, one has to treat the solvent and the surfactant in different ways. Such 
a model has been proposed by the present authors [38, 39,45471. In this model the binary 
solvent is described by a continuous scalar field X(T) and the surfactant is described as 
discrete molecules with a molecular shape. As the continuous and discrete descriptions are 
combined in this model, this model is named as the hybrid model. 

The hybrid expression for the free energy is obtained by replacing @A(T) and h(r)  in 
equation (4.5) by 

@ K ( T ) = ~ @ ) ( T )  (K=A,B)  (4.13) 

where $$(T) is the distribution of K monomers of the ith surfactant molecule and the 
summation is taken over all the surfactant molecules 138,471. As the function @) describes 
the form of the Kth subchain of the ith block copolymer chain, it can be called the form 
function. For a simple choice for the form function &) for a macromolecular block 
copolymer, one can use a Gaussian distribution of an ideal polymer chain. Then Si., 
accounts for the elastic deformation energy of the coil of the block copolymer chain. 

As a surfactant molecule is composed of a pair of an A subchain and a B subchain, at 
least two parameters are necessary to specify the ith surfactant molecule, i.e. the position of 
the centre of mass ~i and the unit vector pointing from the centre of the B subchain to the 
centre of the A subchain denoted as ai. The description of the surfactant molecule using 
these two variables and a; corresponds to the dipole approximation in electromagnetism. 

i 
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Then the freeenergy functional can be expanded in a power series in ri and using the 
multipole expansion technique [38]. The resulting free-energy functional contains not only 
the variables ri and & but also the form functions +$)(r) [38]. Therefore the hybrid 
model can incorporate the molecular shape of the surfactant molecule (in this case the 
block copolymer) explicitly. Such a feature of the hybrid model is useful in simulating a 
surfactant molecule whose molecular shape is not simple. For example, the hybrid model 
can be applied to a block copolymer with a shape asymmetry between the two blocks 
(subchains) [48] as will be briefly mentioned in the next section. 

For the equations of motion for the hybrid model, we note that the variables ri(t) 
and &(t) are not conserved variables like the field X ( r ,  t). Therefore they do not obey 
continuity equations like equations (4.6) and (4.7). Instead, these variables are assumed to 
obey the purely dissipative equations of motion: 

d a F  
-rt(t) = -Lr- 
dt ari 

-&(t) d = -L" [g - (E . &) &] dt 

(4.14a) 

(4.146) 

where L' and Ls are mobilities of surfactant molecules. Equations (4.14a, b) are the 
equations of motion for a particle moving in a viscous medium. The second term on the RHS 
of equation (4.14b) comes from the cons@aint I &  = 1. This hybrid model can be mapped 
onto a continuum model like (4.10a-c) by using (4.9a-c) and taking the small-surfactant 
limit 138,391. 

5. Theoretical and simulation results 

In this section, we review numerical as well as theoretical results obtained by the models 
presented in the preceding section. For static properties of surfactant solutions, an excellent 
review article has already been Written [16]. Thus we here concentrate on the dynamic 
properties focusing on the phase-separation process as an example. 

In usual binary mixtures such as binary alloys and polymer blends, phase separation 
takes place when the binary mixture is quenched from a high-temperature disordered state to 
a low-temperature state where the binary mixture separates into two phases, each of which 
is rich in one of the two components. After a sudden temperature quench, composition 
fluctuations are created and grow to form domain structures in the late stage. Such a phase 
separation process is roughly classified into two time regimes. One is the early stage where 
the amplitudes of the composition fluctuations are small so that the non-linear terms in the 
equations of motion can be neglected [49]. The other regime is the late stage where the 
composition fluctuations have fully evolved and therefore the dynamics is dominated by 
the non-linear effects. In this time regime, the system is divided into domains separated 
by interfaces, where the coarsening of domains is driven by interfacial tension [50]. The 
average domain size I(t) grows in time as Z(t) -at' with z = f for solid alloys [51] and 
with z = 1 for fluid mixtures [52], which is called dynamical scaling [U]. One of the main 
interesting points is how this dynamical scaling is affected by the added surfactant. 

As an example, we show in figure 10 the snapshot pictures of irregular bicontinuous 
structures generated using the hybrid model. In these figures, the volume fractions of A 
component and of B component are set to be equal. The dotted regions and the white regions 
correspond to A-rich domains and B-rich domains, respectively. Surfactant molecules 
are shown by small circles with a short line, which show the position and the direction 
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Figure 10. Snapshot p i c W  of irregular bicontinuous svUctm simulated using the hybrid 
model, where (a) t h e d  noise is neglected, and (b) thermal noise is included (see [47l). 

of surfactant molecules, respectively. In figure lO(a), thermal fluctuations are neglected, 
while thermal fluctuation effects are taken into account in figure 10(b). One finds that the 
molecules are put into disorder by the thermal fluctuations. Note that the con~iguration 
shown in figure IO@) resembles to that generated by the lattice MC simulation by Larson 
and co-workers (figure 8). In the model of Larson and co-workers, each lattice point is 
regarded as a single molecule. On the other hand, in the hybrid model, such a molecular 
picture for.the solvent has already been averaged out and each dot in figure 10 corresponds 
to a number of molecules. 

Using the two-dimensional hybrid model, we performed a series of simulations on the 
phaseseparation processes from initial uniformly mixed states of the binary mixture and the 
surfactant 138, 39, 471. In the following we discuss the dynamics of such phase-separation 
processes. 

5.1. Early-stage d y m i c s  
The dynamics of phase separation in the linear regime was investigated by Kawakatsu and 
Kawasaki using the hybrid model [39] and a spin model [37]. They found that the added 
surfactant has two opposite effects on the initial growth of the composition fluctuation of the 
binary solvent. The amphiphilic property enhances the phase sepmtion, while the impurity 
nature (excluded volume) suppresses the phase separation. This result can intuitively be 
understood by using the free energy equations (4.8) and (4.11). By neglecting all the 
non-linear terms, the equations of motion for the field X ( T ,  t). equations (4.6) and (4.7) 
combined with equation (4.8) or equation (4.11), lead to the following form: 

(5.1) 
where the density field q5 and @ in equations (4.8) and (4.1 1) are expanded in power series 
in small fluctuations around the average values and we have neglected the cross coupling 
terms in equation (4:7). Here, from equations (4.8) and (4.1 l), one finds that the parameters 
c and D depend on the average surfactant density ,& as 

a -X(?-, t )  = LXXVZ[-CX - DVZX] 
at 
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where y = 0 for a monomeric surfactant and y > 0 for a trimeric surfactant. The 
dependence of c originates from the excluded volume effect of the surfactant molecule, while 
the ,& dependence of D is due to the amphiphilic effects. According to the discussions in 
the preceding section, y is an increasing function of the surfactant molecular size. Fourier 
transformation of equation (5.1) leads to the following growth law for the composition 
fluctuation X 

i ( k ,  t) - exp[A(k)t] (5.3) 
where g ( k , t )  is the Fourier transform of X ( r , t )  and A(k) is the growth rate. 
k = km = ( C / ~ D ) ” ~ ,  the growth rate takes its maximum value 

CZ 

4 0 ’  

At 

l(km)=Lxx- ~ (5.4) 

Combining equations (5.2) and (5.4) and neglecting the ps dependence of Lxx ,  one finds 
that the growth rate 1 is reduced for monomeric surfactant molecules, while it is increased 
for sufficiently large surfactant molecules [39]. Actually the enhancement of the phase 
separation due to the added surfactant was observed by the simulation using the two- 
dimensional hybrid model. In figure 11, a comparison between the results of the linear 
analysis and those of the computer simulation both on the hybrid model is shown. Here 
the surfactant density is shown by its average number density i s ,  which is proportional 
to the average surfactant density ps. From the data, one can confirm that an increase in 
the growth rate of the scattering function takes place when the surfactant is added to the 
binary mixture. Here the excluded volume effect of the surfactant molecule is neglected 
both in the simulation and in the linear analysis, and therefore the increase in the growth 
rate is caused by the amphiphilic nature of the surfactant molecule. On the experimental 
side, only the suppression of the phase separation in the early time regime was observed by 
Hashimoto and Izumitani 1141, and the enhancement of the phase separation has not been 
observed experimentally. The block copolymer chain used in the experiment may be too 
short to detect the enhancement effects. 

In the above-mentioned linear analysis, we used the free energy models where the 
directional degrees of freedom of surfactant molecules are already eliminated. If the 
relaxation of the directional degrees of freedom of the surfactant molecule is slow, the 
enhancement effects due to the amphiphilic nature will be reduced 1391. Such an effect may 
interpret the reason why the enhancement is not observed in real experiments, where the 
rotational relaxation of the block copolymer chains is normally very slow. 

5.2. Late-stage dynamics 

In the late stage of the phase separation, the system takes a domain structure and most of 
the surfactant molecules are adsorbed onto interfaces. As the total number of surfactant 
molecules is conserved, the surfactant density on interfaces is gradually increased when 
the coarsening of domains proceeds. The interfacial tension is a decreasing function of 
the surfactant density on the interface, and therefore the driving force for the coarsening is 
gradually decreased. 

Here we show an intuitive dimensional argument [47], which predicts the slowing 
down of the coarsening in the late stage of the formation process of bicontinuous shuctures. 
According to this dimensional argument, the average domain size Z(t) as a function of time 
t is given by the solution of the equation 
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Figure 11. A comparison between the &ulu of linear analysis (bmken lines) and those 
of simulations of the hybrid model (solid cuwes) on the early-stage dynamics of the phase- 
separation process. The average number density of the surfactant tis is set to be (a) 0.0, @) 
0.174 and (c) 0.347, respectively. Note that is is proportional to the average surFdctmt density 
Ps (se W1). 

where Lxx is the Onsager coefficients defined in equation (4.7) and (E@)) is the interfacial 
tension of the surfactant-adsorbed interfaces at time t averaged over the interfaces. If the 
dependence of the interfacial tension on the surfactant density is known, ( E @ ) )  is given by 

(W)) - % W / l o )  (5.6) 

where lo is a positive constant which corresponds to the saturation density of the surfactant 
on the interface. The function 5 is linear in the surfactant density us when us << UO, the 
latter being the saturation density of the surfactant. On the other hand, when US >> 00 the 
interfacial tension becomes essentially constant denoted as 20. If 20 is almost vanishing, 
the phase separation is stopped when the interface is completely saturated by the surfactant. 
In such a case, one has the following growth laws: 

(5.7) 

where we assumed that %(us) approaches 20 exponentially as US increases beyond UO. 

Therefore, the growth exponent is drastically reduced in the late stage. It should be noted 
that the surfactant effect is not only quantitative but also qualitative, i.e. the growth exponent 
z in equation (2.2) as well as the prefactor (Y is affected due to the added surfactant, Such 
a qualitative change has actually been observed by Hashimoto and Izumitani [14] (see 
figure 5) but it was not observed in the experiment by Roe et al [13]. Also the change in 
the growth exponent was confirmed by computer simulations by Laradji et al 130, 341, and 
by Kawakatsu et al [47]. In figure. 12, we show the temporal changes of the characteristic 
length l ( t )  obtained by Laradji etai for bicontinuous domain formation processes. A similar 
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result obtained by the computer simulation on the hybrid model by Kawakatsu et a1 but 
for the characteristic wave number E@), which is roughly the inverse of I @ ) ,  is shown in 
figure 13. A logarithmic domain growth is observed in the simulation by Laradji et a1 , 
which means that the domain growth is essentially frozen. On the other hand, it seems that 
the simulation by Kawakatsu et a1 has not yet reached the final stage where the interfacial 
tension is completely vanishing although a change in the growth exponent is observed. 

- 
53 5.0 63 

In t 
Figure 12. Temporal evolution of the characteristic length 1 0 )  for various surfxiant densities 
calculated with the continuum model. The average surfactant density js is from top to bot" 
0.1, 0.15, 0.17 and 0.2. respectively (see [341). 

A similar argument on the slowing dawn in the late stage has been given on micellar 
formation processes by Yao and Laradji [53], where they calculated the micellar size 
distribution function. They assumed a similar surfactant effect on the interfacial tension 
as was assumed for 2 in equation (5.6) and showed that the micellar distribution is the 
same as that for the systems without surfactant. In this case the surfactant effect is only to 
change the time scale of the phase separation. 

The functional form of the scattering function is also investigated by the hybrid model 
[47]. In figure 14, we show the scaled scattering function S(x) defined by equation (2.3) 
obtained by the simulations on the hybrid model. Figure 14(a) shows the scaled scattering 
function for a simple binary mixture without surfactant, which is very similar to that obtained 
by the polymer experiment (figure 6(a)). Figure 14(b) shows the scaled scattering function 
for the case with added surfactant. Comparing figures 14(a) and 14(b), one recognizes 
that the scaled scattering function becomes broader when the surfactant is added. This 
is interpreted as follows: as the added surfactant is adsorbed onto interfaces and forms 
surfactant sheets on the interfaces, the interfaces undulate due to the incompressibility of 
the surfactant sheets as the coarsening proceeds. Such an undulation leads to the broadening 
of the main peak of S(x) [47]. Such a broadening of the main peak cannot be observed 
in the experimental data shown in figure 6. The discrepancy may partly originate from the 
difference in the molecular size of the block copolymers used in the computer simulation 
and in the experiment. In the MD simulation by Laradji et a1 [30], they reported that no 
appreciable change in the scattering function was found when the surfactant is added to 
the binary fluid mixture. It is worthwhile to note that the surfactant molecules used in this 
simulation seems to be small compared to the domain size. 
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Figure 13. Temporal evolution of the characteristic wave numberf(r) for the average surfactant 
number densities Es = 0.0,0.?47 and 0.694 calculated with the hybrid model (see [47]). 

Finally we show a simulation result on the phase separation in the presence of a 
surfactant which has a shape asymmetry between the two blocks [48]. The shape asymmetry 
is introduced by changing the ratio between the x parameters (interaction parameters 
with the solvent) of the two blocks, and the asymmetry is measured by the parameter 
R (xu - XAB)/(XBB - XAB). Therefore, R = 1.0 corresponds to the symmehic case 
discussed above. Here, the interactions between solvent monomers are kept unchanged. A 
remarkable effect of an asymmetric surfactant is the non-vanishing spontaneous curvature of 
the surfactant-adsorbed interface, which can lead to a morphological change of the domain 
structure. The temporal evolution of the characteristic wave number f ( t )  is shown in 
figure 15 for several values of R. The other parameters are the same as those used in 
figure 13. As the shape asymmetry is increased, the domain growth is more and more 
slowed down compared with the case for the symmetric surfactant. The slowing down 
is caused by a morphological change in the domain structure from a bicontinuous one to 
a micellar one, the latter has much slower growth rate than the former. Morphological 
changes and associating dynamics in emulsion systems are intersting problems which can 
be attacked by the present hybrid approach [6]. 

5.3. Some remarks on the hybrid model 

In the above formulation and simulations, the surfactant molecule is treated as a molecule 
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Figure 14. Scaled scattering functions S(x) defined by equation (2.3) calculated in a computer 
simulation on the hybrid model. The average surfaaant number densities i s  are (a) 0.0 and (b) 
0.694. respectively (see [471). 

asymmetric surfactant 
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I \ I  
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Figure 15. Temporal evolution of Ihe characteristic wave number k(r)  calculated with the hybrid 
model for a system with a block wpolymer (surfactant) which has an asymmehy between the 
two blocks. The average swtktant number density is i s  = 0.347 (see 1441). 

with a rigid shape and only the translational and rotational degrees of freedom are taken 
into account. For an actual surfactant molecule, however, not only the position and the 
direction but also the molecular shape may change upon association or upon adsorption 
onto an interface. For example, the conformation of a polymer chain is deformed due to the 
excluded volume effect when another chain approaches. In order to take such a deformation 
effects into account, one has to introduce more parameters to describe the deformation of 
the form function @)(T). If the undeformed shape is spherical and the shape deformation 
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is small, an expansion of the form function @)(T)  using spherical harmonic functions 
will be useful. In that case, the expansion coefficients serve as the parameters describing 
the deformation. Such an approach will be useful in investigating the static and dynamic 
properties of surfactant associations l i e  micelles, where the deformation of the molecular 
shape cannot be neglected. 

6. Concluding remarks 

Studies on dynamics of surfactant solutions have just started and there are many problems 
which have not yet been solved nor even attacked. The dynamical models reviewed in 
this article are based on many ad hoc assumptions especially in the way the dynamics is 
intmduced, although the static part of the models which is expressed by the free-energy 
functionals is rather well understood owing to the many static works using lattice models 
and continuum models. Almost all of the dynarhical models shown in this article adopt 
local dissipative dynamics just like the alloy systems. Moreover the simulations are limited 
to the two-dimensional case. The hydrodynamic interaction will be very important in real 
surfactant solutions as in the case of binary fluid mixtures and binary polymer blends 
[521. Including the hydrodynamic interaction as well as extending the simulations to three- 
dimensional cases will be one of the important future directions. 

Another future direction may be to attempt quantitative predictions on experimental 
systems. To accomplish this, it is helpful to derive microscopic expressions of the parameters 
of the coarse-grained model, the latter being much easier to simulate and analyse regarding 
large scale and long-time phenomena For a quantitative comparison with experiments, 
the static shape and the shape deformations of the surfactant molecule should also be 
incorporated. These problems are interesting targets of future investigations. 
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